Luke Winslow, Jordan Read, GLEON Fellows
2014-10-27
rLakeAnalyzer
Standardized methods for calculating common important derived physical features of lakes.
LakeMetabolizer
A collection of tools for the calculation of freewater metabolism.
Multiple models of lake metabolism calculation based on diverse statistical underpinnings (In Prep) Luke A Winslow, Jacob A. Zwart, Ryan D. Batt, Hilary Dugan, R. Iestyn Woolway, Jessica Corman, Paul C Hanson, Aline Jaimes, Jordan S Read
GLEON Fellows and Fellowship leadership
Become familiar with open-source R tools for Limnology
Learn open and collaborative development
-Available on CRAN
install.packages('rLakeAnalyzer')
install.packages('LakeMetabolizer')
library(rLakeAnalyzer)
library(LakeMetabolizer)
R-version of original Lake Analyzer
Lake Physics
Tools for gas exchange and metabolism estimation
Become familiar with open-source R tools for Limnology
Learn open and collaborative development
Become familiar with open-source R tools for Limnology
Learn open and collaborative development
Become familiar with open-source R tools for Limnology
Learn open and collaborative development
wtr = c(22.51,22.42,22.4,22.4,22.4,22.36,
22.3, 22.21, 22.11, 21.23, 16.42,
15.15,14.24,13.35,10.94,10.43,
10.36,9.94,9.45,9.1,8.91,8.58,8.43)
depths = c(0, 0.5, 1, 1.5, 2, 3,4,5,6,7,
8, 9, 10, 11, 12,13,14,15,16,
17,18,19,20)
plot(wtr, depths, type='o', ylim=c(16,0))
?thermo.depth
These functions operate on single timesteps
?thermo.depth
All start with “ts.*”
?thermo.depth
Use load.ts to load data into proper format
?load.bathy
?load.ts
wtr.path <- system.file('extdata', 'Sparkling.wtr', package="rLakeAnalyzer")
wtr = load.ts(wtr.path)
head(wtr[,1:3])
datetime wtr_0.0 wtr_0.5
1 2009-05-02 10:00:00 6.555 6.552
2 2009-05-02 10:30:00 6.555 6.505
3 2009-05-02 11:00:00 6.555 6.540
4 2009-05-02 11:30:00 6.745 6.575
5 2009-05-02 12:00:00 6.775 6.575
6 2009-05-02 12:30:00 6.685 6.635
File format is important
file.show(wtr.path)
fpath <- system.file('extdata', 'Sparkling.bth', package="rLakeAnalyzer")
sparkling.bathy = load.bathy(fpath)
head(sparkling.bathy)
depths areas
1 0 583054.0
2 1 549139.5
3 2 519084.9
4 3 496773.0
5 4 477533.7
6 5 455936.5
File format is important (See Vignette)
fpath
[1] "C:/Users/lwinslow/Documents/R/win-library/3.1/rLakeAnalyzer/extdata/Sparkling.bth"
wtr.path
[1] "C:/Users/lwinslow/Documents/R/win-library/3.1/rLakeAnalyzer/extdata/Sparkling.wtr"
ts.meta.depths(wtr[1:4,])
datetime top bottom
1 2009-05-02 10:00:00 0.7583432 0.7583432
2 2009-05-02 10:30:00 7.4634060 7.4634060
3 2009-05-02 11:00:00 7.6274722 7.6274722
4 2009-05-02 11:30:00 0.2500010 0.2500010
ts.thermo.depth(wtr[1:4,])
datetime thermo.depth
1 2009-05-02 10:00:00 0.7583422
2 2009-05-02 10:30:00 7.4634050
3 2009-05-02 11:00:00 7.6274712
4 2009-05-02 11:30:00 0.2500000
wtr.path <- system.file('extdata', 'Sparkling.daily.wtr', package="rLakeAnalyzer")
wtr=load.ts(wtr.path)
wtr.plot.temp(wtr)
Two main groups
Gas Exchange coefficients (timeseries)
?k.cole
Metabolism functions (Single day)
Contain detailed documentation
metab
Calculates metabolism daily across a timeseries